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By Alvin H. Sacks
- SUMMARY

Formulas are developed for the forces and moments (except drag) due
to vortex interference on slender wing-body-tail combinations of general
cross section in terms of the positions and strengths of the shed vortices.
The asnalysis is epplicable to steady motion and to motions which can be
considered to be made up of a succession of steady states (i.e., quasi-
steady motions). In order to illustrate the application of the analysis,
the interference 1ift of a plane wing-body-tail combination in steady

straight £light is determined by utilizing vortex positions obtained by
numericel methods.

It is found that the impulse of each shed vortex and its image
vortex in a transformed circle plane enters into all the interference
forces and moments on the airplene. A simple theorem is given for the
interference forces in steady straight flight which are found to depend

on this impulse evaluated only at the wing trailing edge and at the base
of the configuration.

INTRODUCTION

It has been recognized for some time that interference among the
various airplane components can be very important in determining the aero-
dynemic characteristics of slender configurations. The use of slender-
body theory for treating entire wing-body combinations is not new (see,
e.g., refs. 1, 2, and 3), and for cases falling into this category con-
siderable simplification has resulted. The calculation of interference
effects due to wing wakes (wing-tail or wing-afterbody interference), on
the other hend, is not so clear-cut. Unlike the wing-body problem, this
calculation becomes more difficult as the effects become more important,
since the rolling-up and displacement of the wing vortex sheets cannot
be ignored for long slender configurations.

Various authors have treated certain specific cases of interference
due to wing waekes by assuming simplified wake shapes (e.g., refs. 4t to 7).
The present paper, however, is concerned with developing formulas for
calculating the forces and moments due to wing wekes for slender wing-
body~-tail combinations; the formulas developed are in terms of the
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strengths and positions of the shed vortices and the mapping functions

of the airplane cross sections. Since the purpose of this report is the
presentation of the derived formulas rather than the presentation of cal-
culated results, only the simplest example will be calculated here.
Specifically, the interference 1ift of a plane wing~body-tail combination
will be determined by meking use of a numerical analysis for the vortex
strengths and positions at the tall.

ANATYSIS

It is generally recognized that in the viecinity of a slender body
the wave equation in three space dimensions can be approximated by the
two-dimensional Laplace equation in planes normel to the body axis,
provided the frequency of the motion is small compared with the flight
velocity divided by the length of the body. Hence, the classical methods
of hydrodynamics can be applied to quasi-steady motions of slender bodies
in a compressible fluid. The analysis of reference 8 was the counterpart
of a method due to H. Blasius for obtaining the forces and moments on a
two~dimensional body in an incompressible stream, and the body cross
section was mapped onto a cirecle in order to express the slender-body
stebility derivatives in terms of the mapping functions of the cross-
sectional shapes. The pressures on the body were expressed in terms of
the two-dimensional complex potential and the total forces and moments
were calculated by integrating those pressures round the body cross
section and over the body length. The complex potential was expressed
in a Laurent series of the form

[o0) A -
F=Bint +;Z; E% +D (1)

and the integrations were carried out by the method of residues. In the
present analysis, it will be shown that by a simple extension of the
resulting formulas of reference 8 for the forces and moments the effects
of wing wakes can be included so that wing-body-tail combinations may be
treated in the same fashion. .

The extension to be made will consist of admitting any number of free
vortices external to the body cross section along with their corresponding
imasges inside the body. The boundery conditions are unchanged, then, and
the only fundemental change lies in the expression for the complex poten-
tial which enters into some of the contour integrals to be taken round
the body cross sections for the determination of the forces and moments.

It will first be observed that all the vortices in the flow field
external to the body will be free vortices, representing wing wakes, and
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therefore can themselves sustain no forces. Hence the integrals for the
forces, when evaluated round each external vortex, must vanish. In view
of this fact, the resuliting expressions for the forces and moments will
be the same whether the integrals are evaluated at the body surface or

on any other contour enclosing the body cross section. The integrals
involving the potential can therefore be evaluated at large distances
from the body so that, just as in reference 8, the complex potential will
be expressed as a Laurent series valid at large distances, and the con-
tour integrals will again be evaluated by the method of residues.

The form of the complex potential will be exactly the same as equa-
tion (1) since the same types of singularities are introduced by the
addition of external vortices and their images. Therefore, any contour
integrals which were identically zero before the addition of the vortices
will remain zero. Furthermore, it was found in reference 8 that all the
forces and moments (except drag) are linear in the potential. Hence it
is possible to calculate the forces and moments due to vortex interference
alone (by using only the additional potential due to the vortices and
their images) and then to add these directly to those calculated without
interference. The present analysis will therefore be concerned with the
determination of the additional potential due to the shed vortices and
their images and with the associated interference forces and moments.

If one considers a slender wing-
body-tail combination as shown in
sketch (a), it is noted that the
net circulation in planes perpen-
dicular to the x axis must be
zero for all values of x. Hence
if the airplane cross section in the
physical plane { = y + iz is trans-
formed to a circle of radius ro
(center at the origin) in the o
plane by the transformation

Sketch (a)

&

oo "D -
§=f(c)=c+ZE§ “ ﬁ‘-)r

o
n=o (2) /// ////’
4
L
then the additional complex poten-~ K\‘—//) .
tial F' due to the shed vortices

and their images can be expressed
in the plane of the circle simply
as (see sketch (b))

N

¢ plane o plane

Sketch (D)
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m m
d 2
P02 Fat(0) = - ) Tanlo - o) + ) man(e - 2 ) (3)
k=1 k=1

where m is the number of external (free) vortices and may be a function
of x. All other symbols of the present analysis are defined in Appendix
A. DNow, since the transformation of equation (2) leaves the flow field
at infinity unchanged, the residue of the compléx potential is the same
in either plane. Thus, expanding equation (3) for large o, one finds

i G- g, 2
Fl(C) = Fl!(o') = - -EJ_TZPk<1n g - —g— -%-?kz_— o . -> +
k=1
m -
4
i ro2 1 To
iVrp e _LiL_° _ ...
EKZE: k<}n o o 2 ol ‘> ()
k=1

8o that the residue A,' 1is seen to be

m

m
i ro2 i
At =—=— ) I (oy - = |]=— ) T\O

1 5 kél k<.k S/ 2 L k%, (5)

where Ok . represents the distance between the kth free vortex and its

image in the complex o plene. It is interesting to note that the
quantity Pkokr is proportional to the impulse of the vortex pair made

up of the kth external vortex and its image in the ¢ plane.
According to reference 8 the total forces and moments on a slender

configuration whose trailing edges all lie in the base plane x = 1 are
given by

1
— — _ — oA
Y - il = 2npUoAy . + on[S(R + 2ipe) + Ug % (sgc)]x + 2:tpf — ax +
=Z (o]

! 3k ! ! 2
pf S -B-Ed.x + arippf_Kldx + ippf S(R + ipt,)ax (6)
(o] [e]

[¢}
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1

' 3E;
N - iM = -25pU, (x - 1) — ax -
1 3 _ _
onf (x - c1) 5 [s(ﬁ + 21ple) + Up = (Scc):|d-x -
O

1 1
Ok oR
21(;)[ (x-c1)¥6x p[ (x-cl)Sa—td_x

1

1
2xipp f (x - cq)Eadx - ipp f (x -c1) (R + 1pE,)S ax (1)
(0] (@]

L 1
L =-]2:pUORj(Fd(CE) +%pr dxg% Fa(tt) - amplf RAqdx -
x=1 o) [o]

1 A
ol [ S, - &R )ax - pUoL [ R sterax (8)
(o] (o]

vhere IR denotes the real part, I denotes the imaginary paxrt, and p

is the rate of roll about the body axis. Now, in order to write the
corresponding expressions for the airplane of sketch (a), it will be
convenient to divide the airplane length into the two segments shown. It
should be mentioned that the present analysis will be restricted to wings
with trailing edges normal to the x axis. However, if the wing trailing
edges do not all lie in the same plane x = constant, further division
will of course be necessary, but the procedure will be the same. Equa-~
tions (6), (7), and (8) cen be applied directly to each segment of the
airplane of sketch (a) to give the total forces and moments including
vortex interference if we replace F by (F + F!') and A; by (A1 + Aq?),
vhere TF' and A;*? are the additional complex potential due to the shed
vortices (and their imeges) and the residue of that additional camplex
potential. Thus, making use of equation (5) for. the residue Ay?, and
stipulating that the interference forces act only on portions of the
airplene behind the wing trailing edge, we find that the additional forces
and moments due to vortex interference (and denoted by the subscript I)
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are given by

m m
Y1 - ily = -ipUo Zl‘kﬁkr - Zl‘k??kr -
k=1 =1 =1 T
1y m =
ipf > ka'@ikr ax + ppf kaﬁ’krdx (9)
T k=1 ™ k=1
m
Ny - iMy= ionf (x - cl) I'kf’kr d_x+ipf (x- cl) — Zrk'a'kr dx -
k=21 =
Z m
Dpf (x-cq) Zrk_okrdx (10)
IIIE —_

It =% o0 Rfm(gg)-—puoR 4 magh) +3 pr 2 fa(ed) -
X=Xy
R f Iﬁirkorkrdx (11)
TE k=1

where Xy refers to a station immediately behind the wing trailing edge.

Inasmuch as F?' has been expressed in the transformed circle plane
(eq. (3)) it will, in genmeral, be convenient to carry out the contour
integrations of equation (11) in the o plane, particularly since the
integrals become snalytic in that plane due to the relation oF = ry2
on the circle boundary.

For the special case of steady straight flight, equations (9), (10),
and (11) reduce to

= x=1 = =ATE
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m
1
Nt - M7 = iDUof (x - e1) "g; zrkakr dx (13)

1 m
1 =1 iR foa(d) - 3 ooR § (D) - ok [ B) nogax ()
x=1 =

X=X+ IE k=2
m
and it is interesting to note that the quantity }:Pk“kr enters the
k=1

calculations in much the same manner as the apparent mass enters into the
stebility derivatives of wing-body combinations (see ref. 8). In fact s
equation (12) can be stated in the form of a simple theorem for the
determination of the interference forces. <

THEOREM: The lateral force Yy + ilq due to each vortex of
strength I' shed from a forward wing of a slender wing-body-
tail combination in steady straight flight is equal to the
change, fram wing trailing edge to base of the airplsne, of
the quantity ipUgl'oy where o, 1is the (complex) distance
between the vortex and its image in the plane in which the
body cross section is mapped onto a circle while leaving the
Tlow field at infinity unchanged. )

An important point to notice in regarg.l to equation (12) and the

above theorem is that the quantity pUoR zrkokr evaluated at the wing

k=1
trailing edge is equal to the 1ift of the airplane segment lying ehead of
the wing trailing edge. Hence the interference lift in steady Islsli',ra.ight

flight is equal to the difference between the quantity pUOR‘ kacfkr
1

and the 1lift of the airplane segment shead of the wing tra.iling_edge. x=1
Thus, if we write for the total 1lift of the airplane of sketch (a)

]L.=La+L~b+I.I

where L and Iy, are the 1ifts of the isolated segments of the airplane

lying ahead and behind the wing trailing edge (i.e., with no interference) )
it is clear that
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m m
L =1Lg + Iy, + pUpR kackr - Ig = Ip + pUoR ZI‘ko’kT
k=1 k=1
x=1 x:l

The total 1ift of the airplane is therefore equal to the 1lift of the
isolated airplane segment behind the wing trailing edge plus the quantity

pUg zg:rkokr . The 1lift I;, cen often be calculated by ordinary
k=1

x=1
slender-body theory and for many interesting configurations this part of
the 1ift is already known. The above statements are independent of the
form in vhich the vortex sheet leaves the wing, but this will of course
determine the positions and strengths of the vortices at the base of
the configuration.

It can be seen from equation (12) and the associated theorem that in
steady straight flight the interference side force and interference lift
depend only on the shapes of the cross sections at the wing trailing edge
and at the base of the configuration and on the strengths and positions
of the shed vortices at these two stations. This statement closely
parallels the corresponding statement for slender wing-body combinations
that the side force and 1ift depend only on the shape of the base cross
section (see ref. 1) and on the angle it mskes with the flight direction.
The forces and moments including interference effects will, however,
be nonlinear with respect to the angles of attack and sideslip.

It is evident from equations (9), (10) and (11) that the calculation
of the interference forces and moments requires, in all cases, a knowledge
of the vortex strengths and positions as well as the mepping functions of
the airplane cross sections. The calculation of the forces and moments
without vortex interference reguires only the latter.

APPLICATION TO A PLANE WING-BODY-TATT, COMBINATION

In order to illustrate
the application of the fore-
going analysis, a simple
exemple will be treated briefly.
In this example the interfer-
ence 1lift will be determined
by means of equation (12).
Consider a plane wing-~body-tail
combination in steady straight
flight at an angle of attack o
Sketch (c) as shown in sketch (c¢). The
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cross section is taken as a circle with symmetrical flat-plate wings
mounted along a diameter. The complex variable is then given by

o=% §+%+/<§+ﬁ§>2—hr02

1 a2 A Z
and T = -2-65 + ?> vhere a - i @ a2
is the body radius end 5 is ’ :’D

4

the local semispan of the wing / \'\ . (I“ @K
or tail. It will be assumed a,

that the trailing vortex sheet -5 5 7 ;

is fully rolled up into two K / KJ
vortices somewhere ahead of the '

tail trailing edge which lies-
in the plane x = 1. Thus,

denoting the station x = 1 ¢ plane o plane
by the subscript 1, we have (x=1) (x=1)
at x = 1 (see sketch (d)) Sketch (d)

2 2

—_ 2 a 2 2
1 1
Jo - o)

Furthermore, since here by symmetry

and

it follows that

ir‘k'&'kr = I‘(crlr - G2p) = ER](QI + - 7 (51 + —-—2>
k=1

X=1
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Now, from equation (12),

m m
L= pUo R zpkckr - pUR ZI‘ko‘kr

= k=1 _
k * X= Z X—XI:EE+

and the second term has already been identified as the 1lift of the air-
plane segment ahead of the wing trailing edge. For the present problem,
it the vortex sheet leaves the wing trailing edge as a flat sheet from
each wing panel, this 1ift is known to be (see, e.g., ref. 1)

N 8y e
= 2 2
pUcR ZP k% = 7plUp %89 <l ~seEto=

o So
k=1 X=XTE+

where ao and 8, are the body radius and wing semispan at x = Xpg.
Therefore, the interference 1ift for the plane wing-body-teil combination
of sketch (c) is

2 2
= 200, R /(€ +§L2- 81 + =1 ~:tpU200521—&+39—
LI °© 1 §l 1 81 o o 502 804

(15)

and it is clear that T and {, (the strength and position of rolled-up
vortex 1 at x = 1) must be specified if the interference 1lift is to be
calculated. .

Before any celculations are performed, it is interesting to note
that if the real part of the square root in equation (15) vanishes, then
the interference 1ift is equal and opposite to the 1lift of the airplane
segment ahead of the wing trailing edge. This condition is satisfied if

<?1 + %l— is real and less than ( 8y + %3— and it can easily be shown

1 1
that this requires that ¢§; be real and less than s8;. In other words,
if the rolled-up vortices intersect the tail anywhere along its trailing
edge, then the interference 1ift Just cancels the 1ift forward of the
wing trailing edge. It cen therefore be concluded that, for a wing-body-
tail combination having cross sections of the type shown in sketch (4),
if the location and span of the talil are such that the rolled-up vortices
pass through the tail trailing edge, the total 1ift of the combination is
unchanged by removing the portion of the airplane forward of the wing
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trailing edge. This result has required no assumptions regarding the
influence of the tail on the vortex paths but has required the assumption
of inviscid vortices (no cores). While the above result would be modified
by the presence of viscous cores, equation (15) would still apply at angles
of atteck at which the vortex cores do not touch the body or the tail.

In reference 9, numerical calculations were carried out to determine
the positions of the vortices.at various distances behind the wings of
several plane’ wing-body combinations. In order to make use of those
calculations, we shall consider a specifi¢ slender wing-body cambination
and a specific tail length. Thus let

20-0.6 anda 2-10
80
Also, to insure the validity of the slenderness assumption, we choose the
case treated in reference 9 for A = 2/3, M = 2 vhere A is the wing
aspect ratio and M 1s the free-stream Mach number. The body is cylindri-
cal behind the wing trailing edge so that a; = ag, and it will be assumed

that the vortex positions are not influenced by the tail. Thus from
figure 10 of reference 9

I' = 1.27 Ugasg

and the position &3 of the vortex at the base plane x = 1 1s given by
1 = y1 + 127 vwhere y; and 2y are obtained from figure 7(a) of refer-
ence 9 and 237 is transferred to body axes by adding ad to the values
in the figure.

The ebove information can be put directly into equation (15) to
determine the interference 1lift as a function of the ratio of tail span
to wing span sl/so for all angles of attack for which reference 9 has
supplied the vortex positions. The resulting curves for the interference
1lift coefficient, based on the gross wing area, are shown in figure 1.2
It can be seen that the interference 1lift is nonlinear with respect to
the angle of attack and becomes more negative as the ratio of tail span
to wing spen increases. At s1/ 8o = afsg = 0.6, there is no tail and
the interference 1ift is the 1ift on the cylindrical afterbody.

CONCLUDING REMARKS

The analysis reported in reference 8 has been extended to permit the
caleulation of the total forces and moments (except drag) for slender

1This calculation requires taking the real part of the square root
indicated in equation (15). Since this process is not entirely straight-
forward if embiguities are to be avoided, the procedure is given in
Appendix B.
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wing-body-tail combinations of general cross section performing gquasi-
stationary meneuvers in a compressible fluid. Ixpressions have been
developed in the present paper for the forces and moments due to the
influence of wing wakes on the other airplane components, and these equa-
tions were used to calculate the interference 1lift of a plane wing-body-
tail combination.

The essential quantity required for the calculations is shown to
be proportional to the impulse of each shed vortex and its image vortex
in a transformed circle plane, and it is demonstrated that the calculation
of the interference 1ift in steady straight flight requires the determina-
tion of this quantity only et the trailing edge of the wing and at the
base of the configuration.

Ames Aeronsuticeal ILaeboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Sept. 9, 1955
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APPENDIX A

LIST OF IMPORTANT SYMBOLS

An coefficient of jﬁ term in Laurent expansion of the camplex
potential F(§§ with no vortices in the field

Ap? coefficient of gl_n term in expension of the additional complex
potential Fr(f) due to shed vortices and their images

a body radius .

B coefficient of In { in expension of F({); B = % -ddé_x

ciy distance from airplane nose to pivot point

D a function of X and t which contributes nothing to the forces
and moments considered herein

d tail length, 1 - Xqp

F complex potential ¢ + iy with no vortices in the field

e additional complex potentiel dvue to shed vortices and their images

A length of airplane

L force in the 2z direction (approximately 1ift)

It rolling moment about the x axis

M pitching moment about pivot point x = e

m number of external (free) vortices

N yawing moment about pivot point x = ej

D angular rolling velocity sbout the x axis

a angular pitching velocity ebout the ¥y axis

R V + iW '

r angular yawing velocity about the z axis
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radius of tremsformed circle corresponding to airplane cross
section :

cross-sectional area.o% the airplane
local semispan of wing or tail
meximum semispan of wing (at X = XTE)

meximum semispan of tail (at x = 1)

]

time
component of flight velocity along negative x axis

component of flight velocity along positive y axis
(Vo = UoB if p = 0)

VO - I'(X - Cl)

component of flight velocity along positive 2z axis
(Wo = -Uga, if p = 0)

Wo - a(x - c1)
force in the y direction (side force)

Cartesian coordinates fixed in the body (x rearward, y to
sterboard, z upward, origin at the body nose)

distance fram airplane nose to wing trailing edge

angle of attack (angle between arbitrarily chosen xy plane
and flight direction)

angle of sideslip (angle between xz plane and flight direction)

circulation strength of kth external (free) vortex, positive
counterclockwise

fluid mass density

y + iz

complex coardinate of centroid of cross-sectional ares
position of kth external (free) vortex

complex coordinete in transformed circle plane
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Ok

Oy

Cikj H

~ -

)

position of kth external vortex in transformed circle plane

position of kth external vortex relative to its image in the

2
transformed circle plaeme, ok - 59—

ok
velocity potential

stream function

Special Notations

subscript indicating vortex interference

contour integral taken once round the body cross section in the
positive (counterclockwise) sense

imaginary part
real part

complex conjugate of ( )
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APPENDIX B -
EVATUATION OF THE REAL PART OF A COMPLEX SQUARE ROOT

A complex square root of the type ft® - 8% where ¢ =y + iz and
s is real has branch points at { = *s and can be written in its

factored form ‘
Jt& - 8% = J(6 - s)(¢ + 5)

Now each factor can be written in
polar coordinastes referred to one of

¢ the branch points. Thus (see sketch
(e)) let

/ ” £ -s = rleiy; E +8 = rgei)‘
) 4

-S S

where 7 and A are both limited to
a range of, say, O to 2r (to give
the proper sign changes through the

called a bipolar coordinate systenm
and enables one to write

Sketch (e)

J—__ Jros ei<m> - T3 [cos (Z-—Z—?) + 1 sin (Z—Z'Ail

s0 that the real part is

N\
R ./ge - 8% =.Jrirs cos ? Z >

where

= IJ(y- S)2+22|
= IJ(y+s)2+z2|

_ -1 =z
7y = tan <———y_s>
+ 8

line segment shown). This is commonly
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The sign of the real part of the square root is therefore determined by
the quadrents of 7 and A which depend on the position of the point §
relative to the branch points { = *s and also on the range of 7 and

A specified above.
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